9XA Stanley Meyer PWM


Meyer 9xa PWM  makes a 50% duty, The 9xa is 2 8xa, designed to be used with a transistor, and make a frequency and then gate that same frequency.


I'm finding that the 9XA has a max freq output after the opto-coupler of 1.41KHz max.


This is on PWM-A with switch-2 ON. With switch-1 ON, the freq seems so high,


that the opto-coupler does not have the frequency response to discern the pulses. I tested using 9V at the opto-coupler (maybe need a higher voltage)? With freq doubling after the chokes, the freq will be closer to 3KHz.


I'm thinking that I need to be closer to 4KHz to get to resonance. Do you get similar outputs on the 9XAs that you use? Never the less, I'll try it out on my cell setup once I've put together the SCR and some chokes. it is probibly your transistor. not the opto coupler. yes the opto has a top speed. it is higher then 1khz


Thanks. Yes, tested them, higher than 1khz. Finally, figured out how to adjust the blue trimmer knobs on pmw-a, so that on switch 2, the top end is about 5.8khz, which registers properly after the opto.coupler. At switch 1, freq gets to high for opto, so I'll stick with switch 2 on pwm-a.


if you want faster, you can change a cap and it will go faster


This is Stan's Electrical Polarization Process Unit signal on the scope. The other signal is replicationsignal on the Rigol scope.

We have a LC Tank Circuit with a H Bridge and a 2 Pwm 5kz 2nd 5 khz  gate driving a 2000+ Perm Core with chokes/ ballast creates a charge to a
 water capacitor with a quartz tube this  break water efficiently I post drawing for those of you want to play with circuit  building there is a blocking diode which uses circuit ringing to keep cap charged  we tap out some electrons to keep the bounce power dc and stop it from switching
to ac the cap circuit must stay dc to work the plasma charge build up on the + plate is the catalyst  for more information please visit  securesupplies.biz


Sourcing 9XA Parts


4 Channel Band Rotary Switch Selector 2-Pole 4-Position on that frequency switch




any rotary switch should do the job. if it has more then 4 positions......just connect the channels not in use to the last one in use. then when you forget, and turn it there




0-270V variac 5A, would it offer me any advantages or better production of gas? Would the inductor coil & SCR be capable of running it at the 270v?

the opto coupler and resistor stan used will fail at some voltage you will see it on your scope, the gate will be lost 120 volts is no propblem, as it is designed for that. i have a 350 volt transformer,


i just plug it into my variac. you can change your opto or the resistor to get different higher voltages...or make a resistor voltage devider for the opto. a voltage devider would be like 2 of those resistors, one goes to pos and the other to neg, then pull power from the center of the 2 resistor. if the resistors are the same value, then you split the voltage in 2. https://en.wikipedia.org/wiki/Voltage_divider there is no limit to what you can do with electronics.  just because you do something that did not copy meyer, does not mean it will not work. just remember, the voltage will go up passed what you put in.


SCR Up Grade to make change to high Variac 

Changes to the SCR board to allow the 0-270v on the Variac Transformer.

well over rated for what I would need it for! NTE5531 25 Amp 800 Volt SCR (QTY 1 ea) $7.50



Shoul work. and be over rated

Here are the folowing of my experiments on the SCR board and a bifilar coil : How to compute the gate frequency in order to build a specific pulse.


Here under a memo. 

what I take from this experience is that I need a precise frequency if I want a proper functionning of my circuit. Juste pulsing a gate at 33 Hz is not enought, 33.30 Hz or 33.36 Hz make a big difference in the stabilisation of the amp consumption because the more the pulse is regular (the number of pulses is an integer ) the more the amp consumption is stable.

What I don't know is "what is a regular amp consumption on this type of circuit ?" in other words, do I properly set the circuit or do I have other things to work before going further ?


Need more cells now and to build a VIC.

Hum...   there is something wrong in my theory  ... I have tried to make a 7 pulses wave form with this formula but I got only 5. 
As the frequency generator output is a 50% duty cycle, the gate duration is equal to the train pulses duration. My formula is wrong

So back to the worktable  


In fact it's

fg = (2 x Fw )/ 2n ( because of the 50% duty cycle)

It can also be adjusted for variable duty cycle. ( ...back to the worktable...)

might be:

fg = (2 x Fw x D) / n

 Where :

fg : Gate frequency

Fw : Wall frequency

D : Duty cycle

n : Number of pulses in the pulse train


So for 50% duty cycle ,

- a 5 pulses pulse train give us :

fg = (2 * 50 * 0.5)/5

fg = 10 Hz 

 - a 6 pulses pulse train give us :

fg = (2 * 50 * 0.5)/6

fg = 8.33 Hz

 - a 2 pulses pulse train give us

fg = (2 * 50 * 0.5)/2

fg = 25 Hz


9XA   Has the 9XD Power Supply Built in 

9XA and SCR Sync Video 

9XA Gated Pulse Train 

9XA addendum

this circuit addendum is for those who want the “gated” pulse not just a 9XB output. 
if you like this I also have another circuit that does not use the 555 as an oscillator 

ok on to the explanation: 

the two mosfets are the BS170 that’s a small 
TO-92 case, and are good for up to 500mA 

the output is at the arrow. 

the two resistors in parallel are 100 ohm 1 watt, and are for biasing the mosfet. currently the circuit is running at 240mA, and is capable to drive whatever you want, 2N3055, or IRFP260N that is capable of 200V, 50A with a max of 300Watts 

make sure you tie all the grounds together, or you’ll get some weird scope traces. 

if you’re interested in the non 555 oscillator, 
that has adjustment for frequency, duty cycle, and amplitude. post a reply with your email address, because of the limit of file size I can’t post it here. 

thanks mike


this is the explanation for the circuit: 
comparators in oscillator configuration 

firstly you don’t need more than one decade /SN74LS90 because the frequency group can be changed by using jumpers on the header pins to select different freq. groups. this is the same for the gate freq. 

the main or resonant freq. is run through the decade 
to maintain the 50% duty cycle. 

resistors R24, 26, and 27 need to be set for brightness due to the oscillations the resistor will be lower in value make the LED brighter. 

resistor values will be the same for the gate circuit, but the capacitors will be larger for a lower freq. 

both chips are the same LM311, I recommend using 
separate chips so as to keep the noise down. 

the reason there are no values capacitors, is because need to selected caps find your resonant freq. 

I recommend using a separate 5V regulator for the decade and a 12V regulator to supply the rest of the circuit, to give greater output. you could also use the totem pole mosfet driver circuit that Max posted to boost output. I like it. 

R20, and 21 are the same 100 ohm 1 watt resistors as in the beginning of this tread. 

connectors J1 through J8 are for header pins to use jumpers to select frequency groups, simpler that a multi position switch, more that one jumper can be used to add caps to increase capacitance and lower freq. 

decade/ SN74LS90 is connected the same way that Max has posted for the 9XA and 9XB. 

thanks, if you have any questions you can email me at snaprollin@yahoo.com 
the name is mike 
good luck I hope this helps, I have more circuits to add as soon as I can get to them. 

down load pic below here 

About Us

Secure Supplies Media Group is

an international collective of Hot Rodders photographers, writers & drivers with a shared passion for promoting the world's most exciting

Hydrogen car culture stories.

Team Secure

Editor in Chief: Daniel Donatelli 
Senior Editor: Simone White
Editor at Large: Johny Case
Commercial Director: Willem Coetzee
Community Manager: Ryan
Technical Editor: Jason Nash
Concept Artist:  Samuel Hill
Senior Contributors:  Jacky Bright
Contributors:  Sally Smith, Joanne Livey, Bruce Smith.

Contact Us

We're always very interested to hear your own stories as well as to receive your feedback.

Please New Members first but if you don't find what you are looking for then you are welcome to contact us via email, thank you.

Secure Supplies  Social

 Facebook- @SecureSupplies

 Twitter      - @SecureSupplies

 Instagram - SecureSupplies

 Pinterest   - Secure.Supplies

Event Partners


Automotive Partners


Back to Main Site 


Merchandise Partners

Manufacturing  Partners


Secure Supplies Energy Power Gas Magazine ™

All Rights Reserved Worldwide. Copyright © 2012 Secure Supplies Limited Daniel Donatelli © 2009 


 No duplication is permitted of this site graphically or
conceptually unless requested and approved in writing.


Work with us Employment